Building up an Annuity

Lecture 4

Robb T. Koether

Hampden-Sydney College

Mon, Jan 22, 2018

- Definitions
- The Effect of Time
- Building up an Annuity
- Examples
- 6 Assignment

Outline

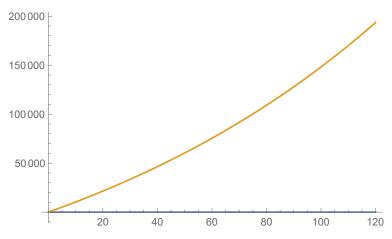
- Definitions
- 2 The Effect of Time
- Building up an Annuity
- 4 Examples
- 6 Assignment

Definitions

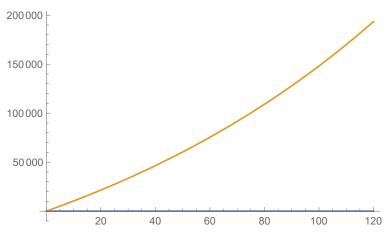
Definition (Annuity (Webster))

An annuity is a plan where a fixed amount of money that is paid in regular payments to a person over time.

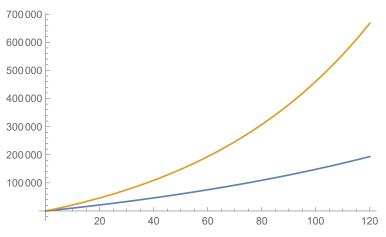
- Typically, a retirement plan is an annuity You invest over your working life and then withdraw from it monthly during retirement.
- One could establish an annuity to pay for a child's college education – You invest for 18 years and withdraw from it semiannually over the next 4 years.

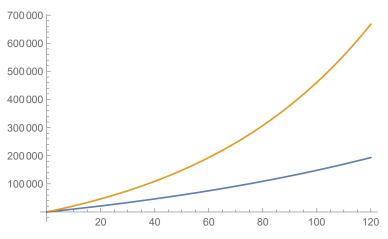

Annuities

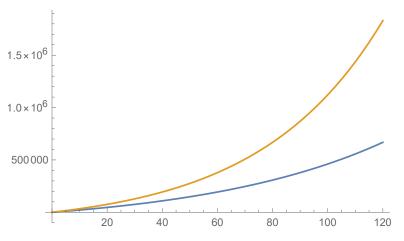
- An annuity has two stages.
 - The investment stage (building it up).
 - The withdrawal stage (drawing it down).
- During the investment stage, the balance grows.
- During the withdrawal stage, the balance diminishes.

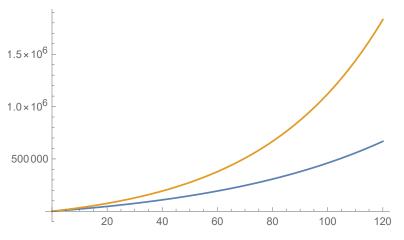

Outline

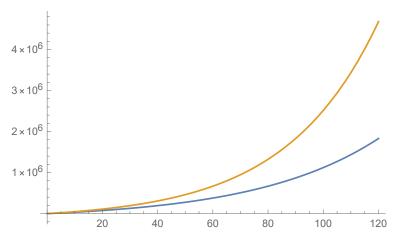
- Definitions
- 2 The Effect of Time
- Building up an Annuity
- 4 Examples
- 6 Assignment

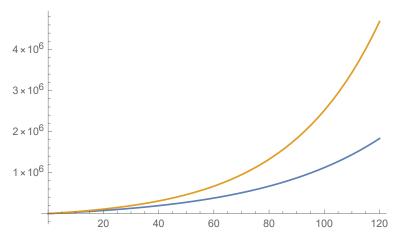

- Twenty years ago, the DJIA was at about 830.
- Now it is at about 26000.
- That represents an annual growth rate of 9%.

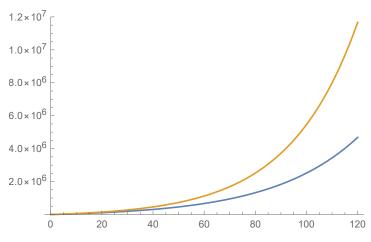

Invest \$1,000 per month at 9% for 10 years Save up \$193,514.28.

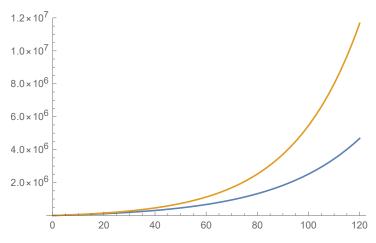

Invest \$1,000 per month at 9% for 10 years Withdraw \$1,741.10 per month for 20 years


Invest \$1,000 per month at 9% for 20 years Save up \$667,886.87.


Invest \$1,000 per month at 9% for 20 years Withdraw \$6,009.15 per month for 20 years


Invest \$1,000 per month at 9% for 30 years Save up \$1,830,743.48.


Invest \$1,000 per month at 9% for 30 years Withdraw \$16,471.67 per month for 20 years


Invest \$1,000 per month at 9% for 40 years Save up \$4,681,320.27.

Invest \$1,000 per month at 9% for 40 years Withdraw \$42,119.05 per month for 20 years

Invest \$1,000 per month at 9% for 50 years Save up \$11,669,101.86.

Invest \$1,000 per month at 9% for 50 years Withdraw \$104,989.94 per month for 20 years

Outline

- Definitions
- 2 The Effect of Time
- Building up an Annuity
- 4 Examples
- 6 Assignment

Example (Three Deposits)

- Let the annual interest rate be 10%.
- Invest \$1000 each year for 5 years.

Example (Three Deposits)

- Let the annual interest rate be 10%.
- Invest \$1000 each year for 5 years.

Example (Three Deposits)

	Starting				Ending
Year	Balance	Interest	Total	Deposit	Balance
1	0.00	0.00	0.00	1,000.00	1,000.00

Example (Three Deposits)

	Starting				Ending
Year	Balance	Interest	Total	Deposit	Balance
1	0.00	0.00	0.00	1,000.00	1,000.00
2	1,000.00	100.00	1,100.00	1,000.00	2,100.00

Example (Three Deposits)

	Starting				Ending
Year	Balance	Interest	Total	Deposit	Balance
1	0.00	0.00	0.00	1,000.00	1,000.00
2	1,000.00	100.00	1,100.00	1,000.00	2,100.00
3	2,100.00	210.00	2,310.00	1,000.00	3,310.00

Example (Three Deposits)

	Starting				Ending
Year	Balance	Interest	Total	Deposit	Balance
1	0.00	0.00	0.00	1,000.00	1,000.00
2	1,000.00	100.00	1,100.00	1,000.00	2,100.00
3	2,100.00	210.00	2,310.00	1,000.00	3,310.00
4	3,310.00	331.00	3,641.00	1,000.00	4,641.00

Example (Three Deposits)

	Starting				Ending
Year	Balance	Interest	Total	Deposit	Balance
1	0.00	0.00	0.00	1,000.00	1,000.00
2	1,000.00	100.00	1,100.00	1,000.00	2,100.00
3	2,100.00	210.00	2,310.00	1,000.00	3,310.00
4	3,310.00	331.00	3,641.00	1,000.00	4,641.00
5	4,641.00	464.10	5,105.10	1,000.00	6,105.10

Annuity Formula (Building Up)

• If the payments are annual, then k = 1 and the formula is not too bad:

$$F = P\left(\frac{(1+r)^t - 1}{r}\right)$$

where F is the future value of the annuity, P is the amount investment per period, r is the annual interest rate, and t is the number of years.

Annuity Formula (Building Up)

• If the payments are annual, then k = 1 and the formula is not too bad:

$$F = P\left(\frac{(1+r)^t - 1}{r}\right)$$

where F is the future value of the annuity, P is the amount investment per period, r is the annual interest rate, and t is the number of years.

 When k is greater than one, then the formula is a bit more complicated.

$$F = P\left(\frac{\left(1 + \frac{r}{k}\right)^{kt} - 1}{r/k}\right).$$

Annuity Formula (Building Up)

• If the payments are annual, then k = 1 and the formula is not too bad:

$$F = P\left(\frac{(1+r)^t - 1}{r}\right)$$

where F is the future value of the annuity, P is the amount investment per period, r is the annual interest rate, and t is the number of years.

 When k is greater than one, then the formula is a bit more complicated.

$$F = P\left(\frac{\left(1 + \frac{r}{k}\right)^{kt} - 1}{r/k}\right).$$

• We replace r with r/k and t with kt.

Example (Three Deposits)

The future value is

$$F = \frac{P\left((1+r)^t - 1\right)}{r}$$

Example (Three Deposits)

The future value is

$$F = \frac{P((1+r)^t - 1)}{r}$$
$$= \frac{1000((1.10)^5 - 1)}{0.10}$$

Example (Three Deposits)

The future value is

$$F = \frac{P((1+r)^t - 1)}{r}$$

$$= \frac{1000((1.10)^5 - 1)}{0.10}$$
= \$6,105.10.

Outline

- Definitions
- 2 The Effect of Time
- Building up an Annuity
- 4 Examples
- 5 Assignment

- A person earning \$48,000 a year invests 5% of his income in a retirement account earning 7% per year for 45 years.
- How much does he have at the end of 45 years (annual payments)?

- A person earning \$48,000 a year invests 5% of his income in a retirement account earning 7% per year for 45 years.
- How much does he have at the end of 45 years (annual payments)?
- How much does he have at the end of 45 years (monthly payments)?

- A person earning \$48,000 a year invests 5% of his income in a retirement account earning 7% per year for 45 years.
- How much does he have at the end of 45 years (annual payments)?
- How much does he have at the end of 45 years (monthly payments)?
- What if the account earned 8% per year?

- A person earning \$48,000 a year invests 5% of his income in a retirement account earning 7% per year for 45 years.
- How much does he have at the end of 45 years (annual payments)?
- How much does he have at the end of 45 years (monthly payments)?
- What if the account earned 8% per year?
- What if the account earned 9% per year?

- A person earning \$48,000 a year invests 5% of his income in a retirement account earning 7% per year for 45 years.
- How much does he have at the end of 45 years (annual payments)?
- How much does he have at the end of 45 years (monthly payments)?
- What if the account earned 8% per year?
- What if the account earned 9% per year?
- What if the account earned 12% per year?

Outline

- Definitions
- 2 The Effect of Time
- Building up an Annuity
- 4 Examples
- 6 Assignment

Assignment

Assignment

Annuity worksheet: 1 - 5.

